Uncertainty, design, and optimization department of civil and environmental engineering duke university henri p. Calculates time solution of unforced single degreeoffreedom vibration systems given initial conditions. A system with a finite number of degrees of freedom are called discrete or lumped parameter system, and those with an infinite number of degrees of freedom are called continuous or distributed systems. Undamped and damped due to harmonic force is considered. Vibration of single degree of freedom systems request pdf. The prototype single degree of freedom system is a. In physics, the degrees of freedom dof of a mechanical system is the number of independent parameters that define its configuration or state. Single degree of freedom linear oscillator sdof for many dynamic systems the relationship between restoring force and deflection is approximately linear for small deviations about some reference. The frequencies at which they vibrate, known as natural frequencies, depend primarily upon the mass and elasticity stiffness of the. This document describes free and forced dynamic responses of single degree of freedom sdof systems. A separate topic covers the analysis of linear elastic multipledegreeof. Vibration of single degree of freedom systems assoc.
This video is an introduction to undamped free vibration of single degree of freedom systems. Figure 2 in order to completely specify the position and orientation of a cylinder in cartesian space, we would need three coordinates x, y and z and three angles relative to each angle. The term free vibration is used to indicate that there is no external force causing the motion. In addition, we consider the system, during its motion or vibration, to be free from external actions or forces. Single degree of freedom system and free vibration the course on mechanical vibration is an important part of the mechanical engineering undergraduate curriculum. Free vibrations of a single degree of freedom sdof system with viscous damping duration. An oscillator with one degree of freedom and a harmonically variable force is studied. Give some examples of single degree of freedom systems and multi degree of freedom systems. Unit 7 vibration of mechanical mechanical systems systems structure 7. Sep 26, 2010 what is a single degree of freedom sdof system. Vibrations of single degree of freedom systems 7 2 free response of systems with mass, sti. However, most actual structures have several bodies and several restraints and therefore several degrees of freedom. The knowledge of the mechanical properties of materials used in mechanical systems devices is critical not only in designing structures.
An inert mass is on a rigid base, separated by an elastic element. In the study of free vibrations, we will be constrained to one degree of freedom. The vibration of structures with more than one degree of freedom many real structures can be represented by a single degree of freedom model. Vibrations of single degree of freedom systems cee 541. To calculate the vibration frequency and timebehavior of an unforced springmassdamper system, enter the following values. We will formulate the equations of motion of a simple 2story. Unit 22 mit opencourseware free online course materials. The number of degree of freedom of a mechanical system is equal to the minimum number of independent coordinates. Dynamic analysis of multidegreeoffreedom systems using.
For instant a simple pendulum oscillation and the motion of a swing after an initial disturbance. Unit 7 vibration of mechanical vibration of mechanical. The mathematical models that govern the free vibration of single degree of freedom systems can be described in terms of homogeneous secondorder ordinary differential equations that contain displacement, velocity, and acceleration terms. The simple 1dof systems analyzed in the preceding section are very helpful to develop a feel for the general characteristics of vibrating systems. Such systems are called single degreeoffreedom sdof systems and are shown. Such systems are called single degreeoffreedom sdof systems and are shown in the following figure. Free vibration of singledegreeoffreedom sdof systems procedure in solving structural dynamics problems 1. Nov 01, 2019 a system with a finite number of degrees of freedom are called discrete or lumped parameter system, and those with an infinite number of degrees of freedom are called continuous or distributed systems. Chapter 2 free vibration of single degree of freedom 1. The motion is primarily the result of initial conditions, such as an initial displacement of the mass element of the system from an equilibrium position andor an initial velocity. The mass is allowed to travel only along the spring elongation direction. Undamped sdof system its acceleration and opposing its motion. Singledegreeoffreedom sdof systems dynamic response of sdof systems subjected to external loading governing equation of motion m. Free vibration of singledegree o f freedom systems systems are said to undergo free vibration when they oscillate about their static equilibrium position when displaced from those positions and then released.
Mdof discrete parameter systems, since there are many significant differences to single degree of freedom sdof systems. Free vibration of single degree of freedom systems springerlink. Mod01 lec11 free and forced vibration of single degree of freedom systems nptelhrd. Singledegreeoffreedom system and free vibration the course on mechanical vibration is an important part of the mechanical engineering undergraduate curriculum. Interactive single degree of freedom free reponse plot in ipython. Dynamics of structures one degree of freedom systems in real. Dynamics of simple oscillators single degree of freedom. Gavin spring, 2015 this document describes free and forced dynamic responses of single degree of freedom sdof systems. In this chapter the free vibration of undamped and damped single degree of freedom systems is discussed.
The frequencies at which they vibrate, known as natural frequencies, depend primarily. Derivation derive the dynamic governing equation of the simpli. The term free vibrationis used to indicate that there is no external force causing the motion, and that the motion is primarily the result of initial conditions, such as. Such systems are called single degree of freedom sdof systems and are shown in the following figure. The vibration of structures with more than one degree of. Multiple degreeoffreedom systems are discussed, including the normalmode theory of linear elastic structures and. The second figure denotes a two rotor system whose motion can be specified in terms of. Free vibration of singledegreeoffreedom sdof systems.
Mdof systems equations of motion undamped free vibration mode shapes and frequencies. Introduction to undamped free vibration of sdof 12. The default calculation is for an undamped springmass system, initially at rest but stretched 1 cm from its neutral position. Vibrations in free and forced single degree of freedom. Previously saw in unit 19 that a multi degree of freedom system has the same basic form of the governing equation as a single degree of freedom system.
Introduction a system is said to undergo free vibration when it oscillates only under an initial disturbance with no external forces acting after the initial disturbance 3. Free vibration of single degree of freedom sdof chapter 2 2. Structural dynamics and degree of freedom civildigital. Free vibration of singledegree of freedom systems systems are said to undergo free vibration when they oscillate about their static equilibrium position when displaced from those positions and then released. Structural dynamics of linear elastic single degree of freedom sdof systems this set of slides covers the fundamental concepts of structural dynamics of linear elastic single degree of freedom sdof structures.
In such cases, the oscillation is said to be free damped vibration. The number of degrees of freedom that a structure possesses is equal. The vibration of structures with more than one degree of freedom. Request pdf vibration of single degree of freedom systems. Dynamic degrees of freedom are a set of independent displacementsrotations that completely define the displaced position of the mass with respect to its initial position.
Blake introduction this chapter presents the theory of free and forced steadystate vibration of single degreeoffreedom systems. It analyzes the determination of the free and forced vibration response of an sdof system to various forms of excitation relevant to aircraft loads. Describes free vibration, the ode, natural frequency, and natural period. Free vibration of singledegree of freedom systems free vibration occurs when the system oscillates on its own due to initial disturbance without any external forces. Mar 23, 2020 single degree of freedom systems cee 541. The analysis can be easily visualized with the aid of a free body diagram. While the massspring is a useful representation, many di erent, more complex systems can be studied as sdof systems, either exactly or under some simplifying assumption. The resulting differential equation is piecewise linear and has an exact solution if only a certain region is. Systems introductory remarks until now our sdof s were described as composed by a single mass connected to a xed reference by means of a spring and a damper. Pdf dynamics of nonlinear single degree of freedom systems. Free vibration of single degree of freedom systems. Pdf optimal design of a damped single degree of freedom.
Forced vibration of singledegreeoffreedom sdof systems. Two degree of freedom system some examples of two degree of fdfreedom systems are shown in the figure. The ensuing timebehavior of such systems also depends on their initial velocities and displacements. It is necessary for the development and the performance of many modern engineering products. Undamped systems and systems having viscous damping and structural damping are included. This document describes free and forced dynamic responses of simple oscillators somtimes called single degree of freedom sdof systems. The easiest example to describe a vibrating system is a single degree of freedom system sdof system. This chapter introduces some of the basic concepts of vibration analysis for single degree of freedom sdof discrete parameter systems. Dynamic analysis of multidegreeoffreedom systems using a. Mar 03, 2015 this video is an introduction to undamped free vibration of single degree of freedom systems. Vibrations in free and forced single degree of freedom sdof.
Single degree of freedom sdof system m k ft ut figure 1. Derivation derive the dynamic governing equation of. Free vibration of single degree of freedom sdof chapter 2 introduction a. Abstractionmodeling idealize the actual structure to a simpli. Singledegreeoffreedom linear oscillator sdof for many dynamic systems the relationship between restoring force and deflection is approximately linear for small deviations about some reference. Dynamics of simple oscillators single degree of freedom systems. May 22, 20 mod01 lec11 free and forced vibration of single degree of freedom systems nptelhrd. Mod01 lec11 free and forced vibration of single degree of. Gavin fall, 2014 this document describes the free and forced response of single degree of freedom sdof systems. They are too simple to approximate most real systems, however.
Chapter 9 multidegreeoffreedom systems equations of motion. Sections free vibration model conservation of energy method rayleigh method natural frequency example octave rule some mathematics free vibration model conservation of energy method rayleigh method natural frequency example octave rule some mathematics section 1 free vibration model figure 1. Structural dynamics of linear elastic singledegreeof. Oct 31, 2014 chapter 2 free vibration of single degree of freedom 1. Free and forced vibration study notes for mechanical. Chapter 2 free vibration of single degree of freedom. Structural dynamics department of civil and environmental engineering duke university henri p. Vibration of single degree of freedom systems introduction. Single degree of freedom systems equation of motion youtube. Mod01 lec11 free and forced vibration of single degree.
The simplest vibratory system can be described by a single mass connected to a spring and possibly a dashpot. Vibrations of single degree of freedom systems cee 201l. Chapter 3 p a g e 32 single degree of freedom systems sdof many simple structures can be idealized as a concentrated or lumped mass, m, supported by a massless structure with stiffness, k, in the lateral direction. Multidegreeoffreedom systems equations of motion, problem statement, and solution methods twostory shear building a shear building is the building whose floor systems are rigid in flexure and several factors are neglected, for example, axial deformation of beams and columns. A separate topic covers the analysis of linear elastic multiple degree of freedom mdof systems. View notes chapter 2 free vibration of single degree of freedom from mae 3400 at delaware technical community college. Example of overhead water tank that can be modeled as sdof system 1. Gavin fall, 2018 this document describes free and forced dynamic responses of simple oscillators somtimes called single degree of freedom sdof systems. The fi tfirst figure shows a two mass two spring system that is described by two linear coordinates x1 and x2. It is important in the analysis of systems of bodies in mechanical engineering, structural engineering, aerospace engineering, robotics, and other fields the position of a single railcar engine moving along a track has one degree of freedom because. It focuses on setting up the equations of motion, finding natural frequencies and mode shapes for free vibration, considering damping and determining the. The easiest example to describe a vibrating system is a singledegreeoffreedom system sdof system.
1179 635 829 1334 809 790 497 60 387 1516 12 284 225 449 83 1573 1099 1311 958 1061 826 355 68 451 686 30 11 773 1056 1281